Package: BTdecayLasso 0.1.1
BTdecayLasso: Bradley-Terry Model with Exponential Time Decayed Log-Likelihood and Adaptive Lasso
We utilize the Bradley-Terry Model to estimate the abilities of teams using paired comparison data. For dynamic approximation of current rankings, we employ the Exponential Decayed Log-likelihood function, and we also apply the Lasso penalty for variance reduction and grouping. The main algorithm applies the Augmented Lagrangian Method described by Masarotto and Varin (2012) <doi:10.1214/12-AOAS581>.
Authors:
BTdecayLasso_0.1.1.tar.gz
BTdecayLasso_0.1.1.zip(r-4.5)BTdecayLasso_0.1.1.zip(r-4.4)BTdecayLasso_0.1.1.zip(r-4.3)
BTdecayLasso_0.1.1.tgz(r-4.4-any)BTdecayLasso_0.1.1.tgz(r-4.3-any)
BTdecayLasso_0.1.1.tar.gz(r-4.5-noble)BTdecayLasso_0.1.1.tar.gz(r-4.4-noble)
BTdecayLasso_0.1.1.tgz(r-4.4-emscripten)BTdecayLasso_0.1.1.tgz(r-4.3-emscripten)
BTdecayLasso.pdf |BTdecayLasso.html✨
BTdecayLasso/json (API)
NEWS
# Install 'BTdecayLasso' in R: |
install.packages('BTdecayLasso', repos = c('https://heilokchow.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/heilokchow/btdecaylasso/issues
- NFL2010 - The 2010 NFL Regular Season
Last updated 12 months agofrom:7c037086fa. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 03 2024 |
R-4.5-win | OK | Nov 03 2024 |
R-4.5-linux | OK | Nov 03 2024 |
R-4.4-win | OK | Nov 03 2024 |
R-4.4-mac | OK | Nov 03 2024 |
R-4.3-win | OK | Nov 03 2024 |
R-4.3-mac | OK | Nov 03 2024 |
Exports:boot.BTdecayLassoBTdataframeBTdecayBTdecayLassoBTdecayLassoCBTdecayLassoF
Dependencies:clicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmenloptrnumDerivoptimxpillarpkgconfigpracmaR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr