Package: BTdecayLasso 0.1.1

BTdecayLasso: Bradley-Terry Model with Exponential Time Decayed Log-Likelihood and Adaptive Lasso

We utilize the Bradley-Terry Model to estimate the abilities of teams using paired comparison data. For dynamic approximation of current rankings, we employ the Exponential Decayed Log-likelihood function, and we also apply the Lasso penalty for variance reduction and grouping. The main algorithm applies the Augmented Lagrangian Method described by Masarotto and Varin (2012) <doi:10.1214/12-AOAS581>.

Authors:Yunpeng Zhou [aut, cre], Jinfeng Xu [aut]

BTdecayLasso_0.1.1.tar.gz
BTdecayLasso_0.1.1.zip(r-4.5)BTdecayLasso_0.1.1.zip(r-4.4)BTdecayLasso_0.1.1.zip(r-4.3)
BTdecayLasso_0.1.1.tgz(r-4.4-any)BTdecayLasso_0.1.1.tgz(r-4.3-any)
BTdecayLasso_0.1.1.tar.gz(r-4.5-noble)BTdecayLasso_0.1.1.tar.gz(r-4.4-noble)
BTdecayLasso_0.1.1.tgz(r-4.4-emscripten)BTdecayLasso_0.1.1.tgz(r-4.3-emscripten)
BTdecayLasso.pdf |BTdecayLasso.html
BTdecayLasso/json (API)
NEWS

# Install 'BTdecayLasso' in R:
install.packages('BTdecayLasso', repos = c('https://heilokchow.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/heilokchow/btdecaylasso/issues

Datasets:
  • NFL2010 - The 2010 NFL Regular Season

On CRAN:

3.00 score 2 stars 5 scripts 208 downloads 6 exports 32 dependencies

Last updated 12 months agofrom:7c037086fa. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 03 2024
R-4.5-winOKNov 03 2024
R-4.5-linuxOKNov 03 2024
R-4.4-winOKNov 03 2024
R-4.4-macOKNov 03 2024
R-4.3-winOKNov 03 2024
R-4.3-macOKNov 03 2024

Exports:boot.BTdecayLassoBTdataframeBTdecayBTdecayLassoBTdecayLassoCBTdecayLassoF

Dependencies:clicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmenloptrnumDerivoptimxpillarpkgconfigpracmaR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr